
 - 1 -

Lux junior 2011
23. bis 25.9.11 Dörnfeld

Efficient Raytracing Methods for Light Simulation

Andreas Bielawny, Ulrich Linnemann,

Brandenburg GmbH, Technologiepark 19, D-33100 Paderborn

Für die lichttechnische Simulation in der Entwicklung von Leuchten und Scheinwerfern
sind verschiedene Rechenmethoden verfügbar. Im Bereich der Darstellung optischer
Oberflächen kann grundsätzlich zwischen exakten und approximativen Methoden
unterschieden werden. Dieser Artikel soll einen Überblick verschaffen über drei
verschiedene Verfahren zur Strahlverfolgung (genauer: non-sequential raytracing), die
gegenwärtig u.a. in der Software LucidShape Verwendung finden.
Spezielles Augenmerk liegt hierbei auf der leistungsfähigsten Methode, dem „GPUtrace“.
Hierbei wird die Computerhardware eines Grafikbeschleunigers verwendet, um die
Rechengeschwindigkeit - vor allem für hohe Strahlzahlen - um ein Vielfaches zu steigern.
Anhand exemplarischer und anschaulicher Lichtmodelle werden Verfahren verglichen.

For optical simulations in lighting development there are different mathematical methods
available. Among procedures for the representation of optical surfaces for non-sequential
raytracing we can distinguish between exact and approximative methods. In this paper, we
will give a short summary on three methods which are currently applied in the LucidShape
software package, with emphasis in the GPU trace feature. This powerful method allows
the use of graphics hardware to speed up the simulation process drastically, especially for
large numbers of rays to be traced. We discuss four examples of lighting solutions to
demonstrate the improvements in simulation time.

 - 2 -

A Short Introduction to Raytracing Simulations

In raytracing simulations, there are certain processes that consume more time than others.
Especially intersections do cost a lot of time. Intersections occur always when a ray is
hitting an optically relevant component, i.e. a geometry that has been assigned an optical
material property. The way, intersections are handled is directly linked to the way in which
the surfaces are treated in a simulation experiment. Thus, most calculation time is spent
on solving the intersections. Naturally, this leads to some conclusions about the impact of
a model’s complexity on simulation time.
The duration of a simulation is in the dimension of time, while the speed of a simulation is
the amount of rays that are traced in this amount of time. Some experiments do not require
a large number of rays (e.g. < ~107 rays), others intrinsically require a lot of “light” –
sometimes very large ray numbers. The latter are typically considered “overnight” or
“weekend” candidates for common off-the-shelf PC hardware. The complexity of a virtual
lighting setup is defined by several factors, such as the outline of optical components, as
well as the surface material types of the interfaces involved. Another factor which is
directly influencing the calculation time of a simulation task is the average number of
intersections for each ray.

The most simple situation consist merely of a light source and a sensor, an example being
a bulb in front of a wall. Ignoring the light source itself for now, we count just one single
intersection: the one with the sensor. Let us call this the intersection No. 0 (zero).
Adding a reflector to such a setup increases the intersection count to 1. Although very
simple, this is a common situation in lighting development.
The more components an experiment contains, the longer the trace will take for each ray
to trace. Extreme examples with very long simulation times are those that either require
many rays or those that expose the rays to a multitude of intersections. Prominent
examples for complex and thus slow models are light pipes and backlighting applications
in general. But also experiments that allow parasitic multiple internal reflections will suffer
noticeably from increased simulation times.
Simple reflector systems, single lens setups, or especially redundant systems which do not
require the simulation of the complete lighting unit (such as multi LED with identical light
engines) in contrast can be considered fast models.
Raytracing speed is obviously important for complex and slow models, while a simple
setup can already be solved in a couple of minutes (or even seconds) with a sufficiently
large number of rays.

Also, the focus of interest of the light engineer plays an important role.
While designing a general outline of a lighting system, only a coarse sensor resolution may
be sufficient. This results directly in a small number of rays required to achieve a decent
signal to noise ratio (SNR) in the results: fast simulation! Fine details, small artefacts and
all simulations in the final phase of development are generally executed with large
numbers of rays, since fine sensor resolutions are being used (keep up a good SNR).
Logical consequence: using a sensor with a resolution (inverse cellsize) that is too fine for
the question at hand is a waste of precious (simulation) time. Using an insufficiently low
sensor resolution of sacrificing the amount of rays traced for a speed up of the simulation
on the other hand is very risky – results may be subject to statistical variations (noise) or
similar deviations or may just be utterly wrong.

 - 3 -

The perfect simulation parameters are always those that will clearly process a certain
result within the minimum amount of time possible while achieving the required precision.

It is mandatory to note that we discuss here only the principle methods of simulation. Still,
differences between specific algorithms and individual implementations will account for a
great deal of variations in precision and calculation time – even among programs that use
the same methodological class of simulations methods. All results regarding actual
simulation times in this paper solely refer to the LucidShape Software.

NURBS grade precision

The highest level of precision in determining the optical response from a surface is
achieved only by calculating the exact position of an intersection as well as the exact
normal of the surface hit in that particular location. In order to achieve this, an
understanding of NURBS1 mathematics is required, as well as a some basic mathematical
considerations. Once these problems have been solved, the results from any simulation
are based on the highest possibly achievable precision. This method is sometimes
referred to as “analytic” grade or “accurate” simulation. Unfortunately, the effort made to
create this precision does cost a measurable share of calculation time, which makes all
exact methods relatively slow in comparison with other raytracing methods.

Tessellation / meshing / approximation methods

The tessellation or meshing of the surfaces in a model is a
common method in computer graphics and simulation. In a
multitude of different applications, meshing is used to define
the precision and resolution of a simulation in trade-off for
calculation speed. The option to decide what to emphasize is
the main feature of all approximation methods of this type.
All geometric surfaces are broken down into a triangular
mesh. This is done using different heuristic approaches and
weighting algorithms to create a minimalistic yet sufficiently
smooth mesh of all surfaces in a lighting model. Limiting the
smallest building blocks and the largest deviations from the
original NURBS surface define the precision of the meshed
surface replica. The figure to the right shows a simple
tessellation of a reflector surface.
One very interesting aspect of efficient tessellation
procedures is the relation between the actual number of
triangles in which an experiment is divided and the resulting
simulation time for the raytrace. This relation is non-linear
but of logarithmic nature. Thus an increase in the number of
triangles will result in a much smaller increase in simulation
time - without further drawbacks on the gain in surface
precision due to the finer meshing.
It is helpful to calibrate any approximative method by comparison to a precise method.
Tessellation parameters should be refined until the results meet the desired agreement
with those light patterns obtained in a preliminary NURBS grade simulation run.

1 NURBS: non-uniform rational B-spline

 - 4 -

GPUtrace

The latest simulation method “GPUtrace” is a special variant of the tessellation principle.
The actual variation are not so much of systematic nature, but rather found in the interplay
of software and hardware.
GPUtrace method makes use of the graphics processors of modern graphics cards. These

GPU (Graphics Processing Unit) in contrast to the CPU (Central
Processing Unit) of a computer does not consist of a small number of
powerful, flexible, and omnipotent workhorses (the cores), but of a
large number of highly specialized graphic processors. These graphics
cores (CUDA cores) for example on a state of the art nvidia card2 can
be combined in clusters of 512 - a very large number when compared
with 2, 4, or maybe 8 cores of a CPU. The specialty of these CUDA

cores is their ability of massive parallel processing.
A rather general command set allows more than the basic geometrical operations of older
graphics card types. Clusters of CUDA cores can compute blocks of problems together,
providing a large number of threads. GPU trace uses the CUDA core (or graphic
processors in general) to execute the time consuming
calculations on the graphics card. Additionally, the CPU
still has to do some part of the work, including feeding
the GPU with calculation jobs. Thus, only a combination
of halfway decent CPU hardware with a fast graphics
card is really efficient in the end. In comparison of two
specific CPU and GPU, a state of the art GPU can
provide about 15 times the computation power
(switching processes per time) of a modern CPU.
Since the GPU trace requires some preparation time in dependence of the number of
triangles an other factors, relative speed increase is higher at large numbers of rays.

GPUtrace examples – simulation time

We have investigated four examples of lighting models with focus on their simulation
times. To compare apples with apples, results from Tessellation and GPUtrace will be
shown.

Single reflector, macrofocal type

The first example consists of a single reflector surface of MF
(macrofocal) type, taking into account the physical extension of the
light source using the edge-ray principle. This is an example for
reflector-based front lighting situations, especially the low-beam
with its precise cut-off line, as well as signal applications in
automotive lighting. Classical reflector lights in general lighting also
belong to this type of simulations. This model shows mostly single
interactions for each ray (reflected only once).

2 All NVIDIA gtx and tesla cards are fully compatible with GPUtrace and are being recommended

107

1581

G
F
lo
p
s

Core i7 GTX 580

Computation Power

 - 5 -

Macrofocal Reflector

0

400

800

1200

1600

0 100 200 300 400 500
millions of rays traced

s
im

u
la

ti
o

n
 t

im
e
 [

s
]

CPU
GPU

Less accurate meshing will show
already relatively good results for
the overall pattern evaluation.

Number of triangles: ~ 6.4x104
Max. acceleration measured: x17

The GPUtrace will be able to speed
up this type of simulation by a
factor of about 17.
The graph shows the simulation
time as a function of the numbers
of rays traced. The relation is
linear, but with a bias for the
preparation time of GPU trace.
The CPU clearly needs more time,
which will become dramatic for large ray numbers in ultra-precise simulations.

Poly-Ellipsoid-System (PES), projector unit

Another automotive frontlighting system, the PES is combining a
poly-ellipsoidal reflector for light capture and for shaping the light
pattern with an aspheric lens for projection onto the road and a
shield for the creation of the cut off line. Thus, it exposes the
rays to a minimum of 3 intersections (1x reflector, 2x lens).
Additional parts, such as the housing are included to obtain a
realistic optical output with all possible influences of stray light or
multiple reflections. PES type headlamps are a unique class of
lighting systems, closely related to other projector setups, such
as beamers or gobo lights.

Number of triangles: ~ 106.
Max. acceleration measured: x34

GPUtrace speeds up this type of
simulation by a factor of about 30.
The higher number of intersections
allows for a greater speed
advantage. This is to some extend
compensated by the need for high
precision. Especially the imaging
properties of the lens have to be
precise to correctly project the light
pattern on the road. Surface errors
(in terms of meshing artefacts) in
the representation of the reflector
and especially the A surface of the
lens would otherwise add up.

PES Model

0

1000

2000

3000

4000

5000

0 100 200 300 400 500
millions of rays traced

s
im

u
la

ti
o

n
 t

im
e
 [

s
]

CPU
GPU

 - 6 -

Tail lamp model, integrated

Automotive lighting in the rear of the car is not so much
focussed on the less demanding lighting function (when
compared with frontlighting), but strongly emphasizes the lit
appearance of the lights. Nevertheless, chromium-look parts
and housing-integrated setups require a high depth of details
in many cases.
Number of triangles: ~ 1.6x106.
Max. acceleration measured: x37

GPUtrace speeds up this type of
simulation by about x35 times.
In this classic automotive tail lamp
we find a halogen bulb, a reflector
and a red PMMA lens. The model
includes the optical parts, as well
as a full geometric model of the
light source and the relevant
absorbing or diffusely reflecting
parts of the housing.
Accurate meshing was used to
correctly shape the bulb and fine
styling details.
Large ray numbers are being used
for luminance evaluation here.

Lens for LED center high mounted stop light (CHMSL)

LED CHMSL have been in use already for quite a while. Here, a cluster of 12 LEDS is
using a single lens part with facetted surface to create the light pattern. This is an
archetype of lens-based multi-LED setups without individual optics.

Number of triangles: ~2x106
maximum acceleration measured: x26

GPUtrace typically speeds up this type of simulation by a factor of
about x19.

Rather sharp edges and variations in curvature require a fine
meshing here. Cross-talk between the emitters and neighbouring
lenses as well as the rear of the light (PCB etc.) suggest also rather
large ray numbers here. Raytracing with up to 2x109 rays has been
performed with this model.
Especially investigations of luminance uniformity is being done with
light of this type (see last images). Large numbers of rays allow for
reliable results.

Taillamp Model

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500
millions of rays traced

s
im

u
la

ti
o

n
 t

im
e
 [

s
]

CPU
GPU

 - 7 -

Geometric View into the CHMSL (top) and off axis Luminance image (bottom) with direct
view on the LED emitters and very smooth and uniform light spread from the lens.

Summary

Among today’s simulation methods for lighting design, the best procedure for a certain
task can be chosen. In terms of calculation speed however, the GPUtrace is the most
powerful technique so far, allowing time saving factors of up to 30x, depending on
hardware configurations. It can be run on low-cost hardware (off-the-shelf nvidia graphic
cards for gaming) and thus compliments any existing hardware cost-effectively.
This technique is constantly being improved and will of course take full advantage of all
future developments in graphics hardware.

	Proceesings

